Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Thiethylperazine for COVID-19

Thiethylperazine has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Zengin et al., Benchmarking ANI potentials as a rescoring function and screening FDA drugs for SARS-CoV-2 Mpro, Journal of Computer-Aided Molecular Design, doi:10.1007/s10822-024-00554-4
AbstractHere, we introduce the use of ANI-ML potentials as a rescoring function in the host–guest interaction in molecular docking. Our results show that the “docking power” of ANI potentials can compete with the current scoring functions at the same level of computational cost. Benchmarking studies on CASF-2016 dataset showed that ANI is ranked in the top 5 scoring functions among the other 34 tested. In particular, the ANI predicted interaction energies when used in conjunction with GOLD-PLP scoring function can boost the top ranked solution to be the closest to the x-ray structure. Rapid and accurate calculation of interaction energies between ligand and protein also enables screening of millions of drug candidates/docking poses. Using a unique protocol in which docking by GOLD-PLP, rescoring by ANI-ML potentials and extensive MD simulations along with end state free energy methods are combined, we have screened FDA approved drugs against the SARS-CoV-2 main protease (Mpro). The top six drug molecules suggested by the consensus of these free energy methods have already been in clinical trials or proposed as potential drug molecules in previous theoretical and experimental studies, approving the validity and the power of accuracy in our screening method.
Touret et al., In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication, bioRxiv, doi:10.1101/2020.04.03.023846
SummaryA novel coronavirus, named SARS-CoV-2, emerged in 2019 from Hubei region in China and rapidly spread worldwide. As no approved therapeutics exists to treat Covid-19, the disease associated to SARS-Cov-2, there is an urgent need to propose molecules that could quickly enter into clinics. Repurposing of approved drugs is a strategy that can bypass the time consuming stages of drug development. In this study, we screened the Prestwick Chemical Library® composed of 1,520 approved drugs in an infected cell-based assay. 90 compounds were identified. The robustness of the screen was assessed by the identification of drugs, such as Chloroquine derivatives and protease inhibitors, already in clinical trials. The hits were sorted according to their chemical composition and their known therapeutic effect, then EC50 and CC50 were determined for a subset of compounds. Several drugs, such as Azithromycine, Opipramol, Quinidine or Omeprazol present antiviral potency with 2<EC50<20µM. By providing new information on molecules inhibiting SARS-CoV-2 replication in vitro, this study could contribute to the short-term repurposing of drugs against Covid-19.
Weston et al., Broad anti-coronaviral activity of FDA approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo, bioRxiv, doi:10.1101/2020.03.25.008482
AbstractSARS-CoV-2 emerged in China at the end of 2019 and has rapidly become a pandemic with roughly 2.7 million recorded COVID-19 cases and greater than 189,000 recorded deaths by April 23rd, 2020 (www.WHO.org). There are no FDA approved antivirals or vaccines for any coronavirus, including SARS-CoV-2. Current treatments for COVID-19 are limited to supportive therapies and off-label use of FDA approved drugs. Rapid development and human testing of potential antivirals is greatly needed. A quick way to test compounds with potential antiviral activity is through drug repurposing. Numerous drugs are already approved for human use and subsequently there is a good understanding of their safety profiles and potential side effects, making them easier to fast-track to clinical studies in COVID-19 patients. Here, we present data on the antiviral activity of 20 FDA approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV. We found that 17 of these inhibit SARS-CoV-2 at a range of IC50 values at non-cytotoxic concentrations. We directly follow up with seven of these to demonstrate all are capable of inhibiting infectious SARS-CoV-2 production. Moreover, we have evaluated two of these, chloroquine and chlorpromazine, in vivo using a mouse-adapted SARS-CoV model and found both drugs protect mice from clinical disease.
Weston et al., Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 In Vitro and SARS-CoV In Vivo, Journal of Virology, doi:10.1128/jvi.01218-20
There are no FDA-approved antivirals for any coronavirus, including SARS-CoV-2. Numerous drugs are already approved for human use that may have antiviral activity and therefore could potentially be rapidly repurposed as antivirals. Here, we present data assessing the antiviral activity of 20 FDA-approved drugs against SARS-CoV-2 that also inhibit SARS-CoV and MERS-CoV in vitro . We found that 17 of these inhibit SARS-CoV-2, suggesting that they may have pan-anti-coronaviral activity. We directly followed up seven of these and found that they all inhibit infectious-SARS-CoV-2 production. Moreover, we evaluated chloroquine and chlorpromazine in vivo using mouse-adapted SARS-CoV. We found that neither drug inhibited viral replication in the lungs, but both protected against clinical disease.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit