Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Lianhuaqingwen for COVID-19

Lianhuaqingwen has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Katre et al., Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro), Future Journal of Pharmaceutical Sciences, doi:10.1186/s43094-022-00423-7
Abstract Background The etiological agent for the coronavirus illness outbreak in 2019–2020 is a novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (COVID-19), whereas coronavirus disease pandemic of 2019 (COVID-19) has compelled the implementation of novel therapeutic options. Main body of the abstract There are currently no targeted therapeutic medicines for this condition, and effective treatment options are quite restricted; however, new therapeutic candidates targeting the viral replication cycle are being investigated. The primary protease of the severe acute respiratory syndrome coronavirus 2 virus is a major target for therapeutic development (MPro). Severe acute respiratory syndrome coronavirus 2, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome coronavirus (MERS-CoV) all seem to have a structurally conserved substrate-binding domain that can be used to develop novel protease inhibitors. Short conclusion With the recent publication of the X-ray crystal structure of the severe acute respiratory syndrome coronavirus 2 Mm, virtual and in vitro screening investigations to find MPro inhibitors are fast progressing. The focus of this review is on recent advancements in the quest for small-molecule inhibitors of the severe acute respiratory syndrome coronavirus 2 main protease.
Low et al., COVID-19 Therapeutic Potential of Natural Products, International Journal of Molecular Sciences, doi:10.3390/ijms24119589
Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
Nayak et al., Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, Journal of Personalized Medicine, doi:10.3390/jpm13040664
Acute respiratory distress syndrome (ARDS) is intricately linked with SARS-CoV-2-associated disease severity and mortality, especially in patients with co-morbidities. Lung tissue injury caused as a consequence of ARDS leads to fluid build-up in the alveolar sacs, which in turn affects oxygen supply from the capillaries. ARDS is a result of a hyperinflammatory, non-specific local immune response (cytokine storm), which is aggravated as the virus evades and meddles with protective anti-viral innate immune responses. Treatment and management of ARDS remain a major challenge, first, because the condition develops as the virus keeps replicating and, therefore, immunomodulatory drugs are required to be used with caution. Second, the hyperinflammatory responses observed during ARDS are quite heterogeneous and dependent on the stage of the disease and the clinical history of the patients. In this review, we present different anti-rheumatic drugs, natural compounds, monoclonal antibodies, and RNA therapeutics and discuss their application in the management of ARDS. We also discuss on the suitability of each of these drug classes at different stages of the disease. In the last section, we discuss the potential applications of advanced computational approaches in identifying reliable drug targets and in screening out credible lead compounds against ARDS.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit