Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

α-lipoic acid for COVID-19

α-lipoic acid has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Gallardo et al., SARS-CoV-2 Main Protease Targets Host Selenoproteins and Glutathione Biosynthesis for Knockdown via Proteolysis, Potentially Disrupting the Thioredoxin and Glutaredoxin Redox Cycles, Antioxidants, doi:10.3390/antiox12030559
Associations between dietary selenium status and the clinical outcome of many viral infections, including SARS-CoV-2, are well established. Multiple independent studies have documented a significant inverse correlation between selenium status and the incidence and mortality of COVID-19. At the molecular level, SARS-CoV-2 infection has been shown to decrease the expression of certain selenoproteins, both in vitro and in COVID-19 patients. Using computational methods, our group previously identified a set of six host proteins that contain potential SARS-CoV-2 main protease (Mpro) cleavage sites. Here we show experimentally that Mpro can cleave four of the six predicted target sites, including those from three selenoproteins: thioredoxin reductase 1 (TXNRD1), selenoprotein F, and selenoprotein P, as well as the rate-limiting enzyme in glutathione synthesis, glutamate-cysteine ligase catalytic subunit (GCLC). Cleavage was assessed by incubating recombinant SARS-CoV-2 Mpro with synthetic peptides spanning the proposed cleavage sites, and analyzing the products via UPLC-MS. Furthermore, upon incubation of a recombinant Sec498Ser mutant of the full TXNRD1 protein with SARS-CoV-2 Mpro, the predicted cleavage was observed, destroying the TXNRD1 C-terminal redox center. Mechanistically, proteolytic knockdown of both TXNRD1 and GCLC is consistent with a viral strategy to inhibit DNA synthesis, conserving the pool of ribonucleotides for increased virion production. Viral infectivity could also be enhanced by GCLC knockdown, given the ability of glutathione to disrupt the structure of the viral spike protein via disulfide bond reduction. These findings shed new light on the importance of dietary factors like selenium and glutathione in COVID-19 prevention and treatment.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit