Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All bromhexine studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchBromhexineBromhexine (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Computational Identification of a Putative Allosteric Binding Pocket in TMPRSS2

Sgrignani et al., Frontiers in Molecular Biosciences, doi:10.3389/fmolb.2021.666626
Apr 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
In Silico study of TMPRSS2 inhibition by camostat, nafamostat, and bromhexine, suggesting allosteric binding for bromhexine, compared to camostat and nafamostat which bind to the active site of TMPRSS2 forming covalent adducts.
4 preclinical studies support the efficacy of bromhexine for COVID-19:
Sgrignani et al., 30 Apr 2021, peer-reviewed, 2 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperBromhexineAll
Computational Identification of a Putative Allosteric Binding Pocket in TMPRSS2
Jacopo Sgrignani, Andrea Cavalli
Frontiers in Molecular Biosciences, doi:10.3389/fmolb.2021.666626
Camostat, nafamostat, and bromhexine are inhibitors of the transmembrane serine protease TMPRSS2. The inhibition of TMPRSS2 has been shown to prevent the viral infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viruses. However, while camostat and nafamostat inhibit TMPRSS2 by forming a covalent adduct, the mode of action of bromhexine remains unclear. TMPRSS2 is autocatalytically activated from its inactive form, zymogen, through a proteolytic cleavage that promotes the binding of Ile256 to a putative allosteric pocket (Apocket). Computer simulations, reported here, indicate that Ile256 binding induces a conformational change in the catalytic site, thus providing the atomistic rationale to the activation process of the enzyme. Furthermore, computational docking and molecular dynamics simulations indicate that bromhexine competes with the N-terminal Ile256 for the same binding site, making it a potential allosteric inhibitor. Taken together, these findings provide the atomistic basis for the development of more selective and potent TMPRSS2 inhibitors.
AUTHOR CONTRIBUTIONS JS designed the study, performed and analyzed simulations and experiments, and wrote and revised the manuscript. AC designed the study, analyzed the results of simulations and experiments, and wrote and revised the manuscript. Both authors contributed to the article and approved the submitted version. SUPPLEMENTARY MATERIAL The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmolb. 2021.666626/full#supplementary-material Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
Afar, Vivanco, Hubert, Kuo, Chen et al., Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia, Cancer Res
Amaro, Baron, Mccammon, An improved relaxed complex scheme for receptor flexibility in computer-aided drug design, J. Comput. Aided Mol. Des, doi:10.1007/s10822-007-9159-2
Amaro, Baudry, Chodera, Demir, Mccammon et al., Effect of bromhexine on clinical outcomes and mortality in COVID-19 patients: a randomized clinical trial, Biophys. J, doi:10.34172/bi.2020.27
Bertram, Glowacka, Blazejewska, Soilleux, Allen et al., TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells, J. Virol, doi:10.1128/jvi.00239-10
Bestle, Heindl, Limburg, Van Lam Van, Pilgram et al., TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells, Life Sci. Alliance, doi:10.26508/lsa.202000786
Cavasotto, Phatak, Homology modeling in drug discovery: current trends and applications, Drug Discov. Today, doi:10.1016/j.drudis.2009.04.006
Chen, Lee, Lucht, Chou, Huang et al., TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells, Am. J. Pathol, doi:10.2353/ajpath.2010.090665
Depfenhart, De Villiers, Lemperle, Meyer, Somma, Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy?, Intern. Emerg. Med, doi:10.1007/s11739-020-02383-3
Fassi, Sgrignani, D'agostino, Cecchinato, Garofalo et al., Oxidation state dependent conformational changes of HMGB1 regulate the formation of the CXCL12/HMGB1 Heterocomplex, Comput. Struct. Biotechnol. J, doi:10.1016/j.csbj.2019.06.020
Friesner, Banks, Murphy, Halgren, Klicic et al., Glide: a new approach for rapid, accurate docking and scoring
Fu, Sahakyan, Camilloni, Tartaglia, Paci et al., ALMOST: an all atom molecular simulation toolkit for protein structure determination, J. Comput. Chem, doi:10.1002/jcc.23588
Guarnera, Berezovsky, Toward comprehensive allosteric control over protein activity, Structure
Habtemariam, Nabavi, Ghavami, Cismaru, Berindan-Neagoe et al., Possible use of the mucolytic drug, bromhexine hydrochloride, as a prophylactic agent against SARS-CoV-2 infection based on its action on the Transmembrane Serine Protease 2, Pharmacol. Res, doi:10.1016/j.phrs.2020.104853
Halgren, Halgren, New method for fast and accurate binding-site identification and analysis, J. Chem. Inform. Modell, doi:10.1021/ci800324m
Hammamy, Haase, Hammami, Hilgenfeld, Steinmetzer, Development and characterization of new peptidomimetic inhibitors of the West Nile virus NS2B-NS3 protease, ChemMedChem, doi:10.1002/cmdc.201200497
Harder, Damm, Maple, Wu, Reboul et al., OPLS3: a force field providing broad coverage of drug-like small molecules and proteins, J. Chem. Theory Comput, doi:10.1021/acs.jctc.5b00864
Hoffmann, Kleine-Weber, Schroeder, Krüger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor, Cell
Huber, How I chose research on proteases or, more correctly, how it chose me, Angew. Chem. Int. Ed. Engl, doi:10.1002/anie.201205629
Ishida, Kato, Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process, J. Am. Chem. Soc, doi:10.1021/ja021369m
Ivanova, Hardes, Kallis, Dahms, Than et al., Optimization of substrate-analogue furin inhibitors, ChemMedChem, doi:10.1002/cmdc.201700596
Jerabek-Willemsen, André, Wanner, Roth, Duhr et al., MicroScale thermophoresis: interaction analysis and beyond, J. Mol. Struct, doi:10.1016/j.molstruc.2014.03.009
Jerabek-Willemsen, Wienken, Braun, Baaske, Duhr, Molecular interaction studies using microscale thermophoresis, Assay Drug. Dev. Technol, doi:10.1089/adt.2011.0380
Jiménez, Doerr, Martínez-Rosell, Rose, De Fabritiis, DeepSite: protein-binding site predictor using 3D-convolutional neural networks, Bioinformatics, doi:10.1093/bioinformatics/btx350
Jorgensen, Chandrasekhar, Madura, Impey, Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys, doi:10.1063/1.445869
Kots, Lushchekina, Varfolomeev, Nemukhin, Role of protein dimeric interface in allosteric inhibition of N-Acetyl-aspartate hydrolysis by human aspartoacylase, J. Chem. Inform. Modell, doi:10.1021/acs.jcim.7b00133
Kozakov, Grove, Hall, Bohnuud, Mottarella et al., The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins, Nat. Protoc, doi:10.1038/nprot.2015.043
Laporte, Naesens, Airway proteases: an emerging drug target for influenza and other respiratory virus infections, Curr. Opin. Virol, doi:10.1016/j.coviro.2017.03.018
Li, Sun, Zhang, Zheng, Jiang et al., Bromhexine hydrochloride tablets for the treatment of moderate COVID-19: an open-label randomized controlled pilot study, Clin. Transl. Sci, doi:10.1111/cts.12881
Lucas, Heinlein, Kim, Hernandez, Malik et al., The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis, Cancer Discov, doi:10.1158/2159-8290.cd-13-1010
Maggio, Corsini, Repurposing the mucolytic cough suppressant and TMPRSS2 protease inhibitor bromhexine for the prevention and management of SARS-CoV-2 infection, Pharmacol. Res, doi:10.1016/j.phrs.2020.104837
Martyna, Klein, Tuckerman, Nosé-hoover chains: the canonical ensemble via continuous dynamics, J. Chem. Phys, doi:10.1063/1.463940
Martyna, Tobias, Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys, doi:10.1063/1.467468
Meyer, Sielaff, Hammami, Böttcher-Friebertshäuser, Garten et al., Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation, Biochem. J, doi:10.1042/bj20130101
Montopoli, Zumerle, Vettor, Rugge, Zorzi et al., Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532), Ann. Oncol, doi:10.1016/j.annonc.2020.04.479
Olsson, Sondergaard, Rostkowski, Jensen, PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions, J. Chem. Theory Comput, doi:10.1021/ct100578z
Panjkovich, Daura, PARS: a web server for the prediction of protein allosteric and regulatory sites, Bioinformatics, doi:10.1093/bioinformatics/btu002
Partridge, Choy, Silva-Garcia, Yu, Li et al., Structures of full-length plasma kallikrein bound to highly specific inhibitors describe a new mode of targeted inhibition, J. Struct. Biol, doi:10.1016/j.jsb.2019.03.001
Pászti-Gere, Czimmermann, Ujhelyi, Balla, Maiwald et al., In vitro characterization of TMPRSS2 inhibition in IPEC-J2 cells, J. Enzyme Inhib. Med. Chem, doi:10.1080/14756366.2016.1193732
Sanchez-Martin, Moroni, Ferraro, Laquatra, Cannino et al., Rational design of allosteric and selective inhibitors of the molecular chaperone TRAP1, Cell Rep, doi:10.1016/j.celrep.2020.107531
Schmaier, Chapter 638 -prekallikrein and plasma kallikrein, doi:10.1016/b978-0-12-382219-2.00638-4
Sgrignani, Bon, Colombo, Magistrato, Computational approaches elucidate the allosteric mechanism of human aromatase inhibition: a novel possible route to small-molecule regulation of CYP450s activities?, J. Chem. Inf. Mod, doi:10.1021/ci500425y
Sgrignani, Bonaccini, Grazioso, Chioccioli, Cavalli et al., Insights into docking and scoring neuronal alpha4beta2 nicotinic receptor agonists using molecular dynamics simulations and QM/MM calculations, J. Comput. Chem, doi:10.1002/jcc.21251
Sgrignani, Garofalo, Matkovic, Merulla, Catapano et al., Structural biology of STAT3 and its implications for anticancer therapies development, Int. J. Mol. Sci, doi:10.3390/ijms19061591
Shen, Mao, Wu, Tanaka, Zhang, TMPRSS2: a potential target for treatment of influenza virus and coronavirus infections, Biochimie, doi:10.1016/j.biochi.2017.07.016
Sherman, Day, Jacobson, Friesner, Farid, Novel procedure for modeling ligand/receptor induced fit effects, J. Med. Chem, doi:10.1021/jm050540c
Shrimp, Kales, Sanderson, Simeonov, Shen et al., An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19, ACS Pharmacol. Transl. Sci, doi:10.1021/acsptsci.0c00106
Singh, Decroly, Khatib, Villoutreix, Structurebased drug repositioning over the human TMPRSS2 protease domain: search for chemical probes able to repress SARS-CoV-2 Spike protein cleavages, Eur. J. Pharm. Sci, doi:10.1016/j.ejps.2020.105495
Stubbs, Renatus, Bode, An active zymogen: unravelling the mystery of tissue-type plasminogen activator, Biol. Chem
Sungnak, Huang, Becavin, Berg, Queen et al., SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes, Nat. Med, doi:10.1038/s41591-020-0868-6
Szabo, Wu, Dickson, Netzel-Arnett, Antalis et al., Type II transmembrane serine proteases, Thromb. Haemost, doi:10.1160/th03-02-0071
Thunders, Delahunt, Gene of the month: TMPRSS2 (transmembrane serine protease 2), J. Clin. Pathol, doi:10.1136/jclinpath-2020-206987
Tibshirani, Walther, Hastie, Estimating the number of clusters in a data set via the gap statistic, R. Stat. Soc, doi:10.1111/1467-9868.00293
Tubiana, Carvaillo, Boulard, Bressanelli, TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries, J. Chem. Inform. Modell, doi:10.1021/acs.jcim.8b00512
Waterhouse, Bertoni, Bienert, Studer, Tauriello et al., SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res
Wiederstein, Sippl, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucl. Acids Res
Xiang, Advances in homology protein structure modeling, Curr. Protein Pept. Sci, doi:10.2174/138920306777452312
Xu, Wang, Hu, Gao, Ma et al., CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction, Nucleic Acids Res
Yamamoto, Matsuyama, Li, Takeda, Kawaguchi et al., Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay, Antimicrob. Agents Chemother, doi:10.1128/aac.01043-16
Yu, Zhou, Tanaka, Yao, Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere, Bioinformatics, doi:10.1093/bioinformatics/btp599
Zang, Gomez Castro, Mccune, Zeng, Rothlauf et al., TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes, Sci. Immunol, doi:10.1126/sciimmunol.abc3582
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit