Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Salinomycin for COVID-19

Salinomycin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Jeon et al., Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs, bioRxiv, doi:10.1101/2020.03.20.999730
AbstractCOVID-19 is an emerging infectious disease and was recently declared as a pandemic by WHO. Currently, there is no vaccine or therapeutic available for this disease. Drug repositioning represents the only feasible option to address this global challenge and a panel of 48 FDA-approved drugs that have been pre-selected by an assay of SARS-CoV was screened to identify potential antiviral drug candidates against SARS-CoV-2 infection. We found a total of 24 drugs which exhibited antiviral efficacy (0.1 μM < IC50 < 10 μM) against SARS-CoV-2. In particular, two FDA-approved drugs - niclosamide and ciclesonide – were notable in some respects. These drugs will be tested in an appropriate animal model for their antiviral activities. In near future, these already FDA-approved drugs could be further developed following clinical trials in order to provide additional therapeutic options for patients with COVID-19.
Dittmar et al., Drug repurposing screens reveal FDA approved drugs active against SARS-Cov-2, bioRxiv, doi:10.1101/2020.06.19.161042
AbstractThere are an urgent need for antivirals to treat the newly emerged SARS-CoV-2. To identify new candidates we screened a repurposing library of ~3,000 drugs. Screening in Vero cells found few antivirals, while screening in human Huh7.5 cells validated 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we found that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH-independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we found 9 drugs are antiviral in lung cells, 7 of which have been tested in humans, and 3 are FDA approved including Cyclosporine which we found is targeting Cyclophilin rather than Calcineurin for its antiviral activity. These antivirals reveal essential host targets and have the potential for rapid clinical implementation.
Jan et al., Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection, Proceedings of the National Academy of Sciences, doi:10.1073/pnas.2021579118
Significance COVID-19 is a global pandemic currently lacking an effective cure. We used a cell-based infection assay to screen more than 3,000 agents used in humans and animals and identified 15 with antiinfective activity, ranging from 0.1 nM to 50 μM. We then used in vitro enzymatic assays combined with computer modeling to confirm the activity of those against the viral protease and RNA polymerase. In addition, several herbal medicines were found active in the cell-based infection assay. To further evaluate the efficacy of these promising compounds in animal models, we developed a challenge assay with hamsters and found that mefloquine, nelfinavir, and extracts of Ganoderma lucidum (RF3), Perilla frutescens , and Mentha haplocalyx were effective against SARS-CoV-2 infection.
Jeon et al., Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs, Antimicrobial Agents and Chemotherapy, doi:10.1128/AAC.00819-20
Drug repositioning is the only feasible option to immediately address the COVID-19 global challenge. We screened a panel of 48 FDA-approved drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which were preselected by an assay of SARS-CoV. We identified 24 potential antiviral drug candidates against SARS-CoV-2 infection. Some drug candidates showed very low 50% inhibitory concentrations (IC 50 s), and in particular, two FDA-approved drugs—niclosamide and ciclesonide—were notable in some respects.
Ju et al., A novel cell culture system modeling the SARS-CoV-2 life cycle, PLOS Pathogens, doi:10.1371/journal.ppat.1009439
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit