Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Obatoclax for COVID-19

Obatoclax has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Patten et al., Identification of druggable host targets needed for SARS-CoV-2 infection by combined pharmacological evaluation and cellular network directed prioritization both in vitro and in vivo, bioRxiv, doi:10.1101/2021.04.20.440626
AbstractIdentification of host factors contributing to replication of viruses and resulting disease progression remains a promising approach for development of new therapeutics. Here, we evaluated 6710 clinical and preclinical compounds targeting 2183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target and cell interactome networking produced cellular networks important for infection. This analysis revealed 389 small molecules, >12 scaffold classes and 813 host targets with micromolar to low nanomolar activities. From these classes, representatives were extensively evaluated for mechanism of action in stable and primary human cell models, and additionally against Beta and Delta SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of novel host factor dependencies and treatments for viral diseases.
Baker et al., A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease, PLOS ONE, doi:10.1371/journal.pone.0245962
Effective SARS-CoV-2 antiviral drugs are desperately needed. The SARS-CoV-2 main protease (Mpro) appears as an attractive target for drug development. We show that the existing pharmacopeia contains many drugs with potential for therapeutic repurposing as selective and potent inhibitors of SARS-CoV-2 Mpro. We screened a collection of ~6,070 drugs with a previous history of use in humans for compounds that inhibit the activity of Mpro in vitro and found ~50 compounds with activity against Mpro. Subsequent dose validation studies demonstrated 8 dose responsive hits with an IC50 ≤ 50 μM. Hits from our screen are enriched with hepatitis C NS3/4A protease targeting drugs including boceprevir, ciluprevir. narlaprevir, and telaprevir. This work suggests previous large-scale commercial drug development initiatives targeting hepatitis C NS3/4A viral protease should be revisited because some previous lead compounds may be more potent against SARS-CoV-2 Mpro than boceprevir and suitable for rapid repurposing.
Girgis et al., Indole-Based Compounds as Potential Drug Candidates for SARS-CoV-2, Molecules, doi:10.3390/molecules28186603
The COVID-19 pandemic has posed a significant threat to society in recent times, endangering human health, life, and economic well-being. The disease quickly spreads due to the highly infectious SARS-CoV-2 virus, which has undergone numerous mutations. Despite intense research efforts by the scientific community since its emergence in 2019, no effective therapeutics have been discovered yet. While some repurposed drugs have been used to control the global outbreak and save lives, none have proven universally effective, particularly for severely infected patients. Although the spread of the disease is generally under control, anti-SARS-CoV-2 agents are still needed to combat current and future infections. This study reviews some of the most promising repurposed drugs containing indolyl heterocycle, which is an essential scaffold of many alkaloids with diverse bio-properties in various biological fields. The study also discusses natural and synthetic indole-containing compounds with anti-SARS-CoV-2 properties and computer-aided drug design (in silico studies) for optimizing anti-SARS-CoV-2 hits/leads.
Wang et al., Repurposing Drugs for the Treatment of COVID-19 and Its Cardiovascular Manifestations, Circulation Research, doi:10.1161/circresaha.122.321879
COVID-19 is an infectious disease caused by SARS-CoV-2 leading to the ongoing global pandemic. Infected patients developed a range of respiratory symptoms, including respiratory failure, as well as other extrapulmonary complications. Multiple comorbidities, including hypertension, diabetes, cardiovascular diseases, and chronic kidney diseases, are associated with the severity and increased mortality of COVID-19. SARS-CoV-2 infection also causes a range of cardiovascular complications, including myocarditis, myocardial injury, heart failure, arrhythmias, acute coronary syndrome, and venous thromboembolism. Although a variety of methods have been developed and many clinical trials have been launched for drug repositioning for COVID-19, treatments that consider cardiovascular manifestations and cardiovascular disease comorbidities specifically are limited. In this review, we summarize recent advances in drug repositioning for COVID-19, including experimental drug repositioning, high-throughput drug screening, omics data-based, and network medicine-based computational drug repositioning, with particular attention on those drug treatments that consider cardiovascular manifestations of COVID-19. We discuss prospective opportunities and potential methods for repurposing drugs to treat cardiovascular complications of COVID-19.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit