Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Isocolumbin for COVID-19

Isocolumbin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Patil et al., Targeting multiple SARS-CoV-2 domains by Indian medicinal plants – A Drug repurposing study using molecular docking, ADME-Tox analysis, Research Square, doi:10.21203/rs.3.rs-3289889/v1
Abstract The rapid transmission of SARS-CoV-2 and its capability to spread in humans has brought about the development of new approaches for treatment against COVID-19. Drugs and vaccines available currently either target the virus ectodomain or endodomain. Thus, repurposing the use of natural products that target more than one part of the virus is the fastest option available for treatment. Plants are a repository of important constituents with proven significant efficacy against many human viruses. The present study focused on employing computational approaches for screening phytochemicals from 4 Indian medicinal plants, by targeting more than one part of SARS-CoV-2 for the identification of natural antiviral therapeutics to determine their feasibility as potential inhibitors of target viral proteins. Here, we used a multi-target, ligand virtual screening study on 9 target proteins important in SARS-CoV-2 lifecycle, namely Spike glycoprotein, Nucleocapsid phosphatase, Spike protein ACE-2, Non-structural protein 10 and 12, RdRp, Envelope protein, Main protease/3CL protease, and Papain like proteas. Out of the 58 plant phytochemicals screened, Z-5-methyl-6- heneicosen-11- one from Piper nigrum, Arjunetin from Terminalia arjuna, Rutin from Azadirachta indica and Makisterone A from Tinospora cordifolia exhibited highest binding affinity with 9 viral targets. In addition, ADMET analysis indicated Ursodeoxycholic acid, Ellagic Acid, Epicatechin and Isocolumbin, Ecdysterone, Columbin from Piper nigrum, Terminalia arjuna, Azadirachta indica, and Tinospora cordifolia have good binding energetics with the target viral proteins. The research thus enlightens the suitable pharmacological properties and the anti-viral activity of potential medicinal plant molecules for human administration using extensive in-silico techniques.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit