Analgesics..
Antiandrogens..
Bromhexine
Budesonide
Cannabidiol
Colchicine
Conv. Plasma
Curcumin
Ensovibep
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Iota-carragee..
Ivermectin
Lactoferrin
Lifestyle..
Melatonin
Metformin
Molnupiravir
Monoclonals..
Nigella Sativa
Nitazoxanide
Nitric Oxide
Paxlovid
Peg.. Lambda
Povidone-Iod..
Quercetin
Remdesivir
Vitamins..
Zinc

Other
Feedback
Home
Home   COVID-19 treatment studies for Exercise  COVID-19 treatment studies for Exercise  C19 studies: Exercise  Exercise   Select treatmentSelect treatmentTreatmentsTreatments
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta
Lactoferrin Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent: 
0 0.5 1 1.5 2+ Hospitalization, PA -6% Improvement Relative Risk Hospitalization, CRF 78% Hospitalization, CRF (b) 64% Severe case, PA 35% Severe case, CRF 24% c19early.com/ex Brandenburg et al. Exercise for COVID-19 Prophylaxis Favors exercise Favors inactivity
Brandenburg, 211 patient exercise study: 6% higher hospitalization [p=0.6] and 35% lower severe cases [p=0.3] https://c19p.org/brandenburg
copied to clipboard
Does Higher Self-Reported Cardiorespiratory Fitness Reduce the Odds of Hospitalization From COVID-19?
Brandenburg et al., Journal of Physical Activity and Health, doi:10.1123/jpah.2020-0817
1 Jul 2021    Source   PDF   Share   Tweet
Retrospective 263 COVID+ patients, showing lower hospitalization with higher self-reported cardiorespiratory fitness, but no significant differences for physical activity. Participants in the study were healthier and more fit than the general population.
risk of hospitalization, 6.0% higher, OR 1.06, p = 0.60, high activity levels 102, low activity levels 39, adjusted per study, multivariable, PA, >1h vigorous vs. no/low, RR approximated with OR.
risk of hospitalization, 78.0% lower, OR 0.22, p = 0.05, high activity levels 177, low activity levels 34, adjusted per study, multivariable, CRF, 6.2-8.7 vs. >10, RR approximated with OR.
risk of hospitalization, 64.0% lower, OR 0.36, p = 0.04, high activity levels 97, low activity levels 34, adjusted per study, multivariable, CRF, 8.7-10 vs. >10, RR approximated with OR.
risk of severe case, 35.0% lower, OR 0.65, p = 0.30, high activity levels 102, low activity levels 39, adjusted per study, multivariable, PA, >1h vigorous vs. no/low, RR approximated with OR.
risk of severe case, 24.0% lower, OR 0.76, p = 0.60, high activity levels 52, low activity levels 34, adjusted per study, multivariable, CRF, 4.4-6.2 vs. >10, RR approximated with OR.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Brandenburg et al., 1 Jul 2021, retrospective, multiple countries, peer-reviewed, survey, 4 authors.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperExerciseAll
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit